Amidines. Part 24. ${ }^{1}$ Influence of Alkyl Substituents at the Amidino Carbon Atom on the Sensitivity to Substitution at the Imino Nitrogen Atom. $\mathrm{p} K_{\mathrm{a}}$ Values of $\boldsymbol{N}^{1} \boldsymbol{N}^{\mathbf{1}}$-Dimethylamidines

Janusz Oszczapowicz* and Konrad Ciszkowski
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland

Abstract

Three series of $N^{1} N^{1}$-dimethylamidines, propionamidines, isobutyramidines, and pivalamidines, each containing the same set of 25 substituents R_{x} at the imino nitrogen atom have been synthesized and their $\mathrm{p} K_{\mathrm{a}}$ values in 95.6% ethanol (azeotrope) measured. The $\mathrm{p} K_{\mathrm{a}}$ values were correlated with σ and σ^{0} constants as well as with the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding primary amines $\mathrm{R}_{\mathrm{x}} \mathrm{NH}_{2}$. Regression parameters for the series studied were compared with those for $N^{1} N^{1}$-dimethyl-formamidines and -acetamidines. It is shown that the sensitivity of the amidine group to substitution at the imino nitrogen atom depends on the polar effects of substituents at the amidino carbon atom. A good linear correlation between the slope of the correlation line and the σ^{*} value of the substituent at the amidino carbon atom is found.

The basicity of amidines depends on substitution at three sites, at both nitrogen atoms and the amidino carbon atom. The site of protonation is the imino nitrogen atom. Thus, as expected, substitution at this site exerts the strongest influence on the $\mathrm{p} K_{\mathrm{a}}$ value of amidines. It was shown ${ }^{2-11}$ that the $\mathrm{p} K_{\mathrm{a}}$ values of amidines containing a substituent at the imino nitrogen atom obey the Hammett equation (1). It was also found that the $\mathrm{p} K_{\mathrm{a}}$

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{0}-\rho_{\mathrm{lm}} \sigma_{\mathrm{lm}} \tag{1}
\end{equation*}
$$

values of amidines containing a substituent R_{x} (alkyl, aryl, or aralkyl) at the imino nitrogen atom can be correlated with the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding primary amines $\mathrm{R}_{\mathrm{x}} \mathrm{NH}_{2}$ measured under the same conditions, and that equation (2) thus
obtained may be used for prediction of the $\mathrm{p} K_{\mathrm{a}}$ values of amidines. ${ }^{10-13}$ In equation (2) $\mathrm{p} K_{\mathrm{a}}^{0}$ has the same meaning as in the Hammett equation.

It is known that the $\mathrm{p} K_{\mathrm{a}}$ values of amidines containing a substituent at the amidino carbon atom obey the Hammett equation. ${ }^{14-16}$ Thus amidines containing two substituents, one at the imino nitrogen atom and the other at the amidino carbon atom, might obey the dual substituent linear regression (3) where $\sigma_{1 \mathrm{~m}}$ and σ_{F} are constants of substituents on the phenyl rings at the nitrogen atom and the functional carbon atom, respectively.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{0}-\rho_{\mathrm{lm}} \sigma_{\mathrm{lm}}-\rho_{\mathrm{F}} \sigma_{\mathrm{F}} \tag{3}
\end{equation*}
$$

But recently, when comparing correlations of $\mathrm{p} K_{\mathrm{a}}$ values of $N^{1} N^{1}$-dimethyl-formamidines and -acetamidines with σ^{0} values as well as with the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding primary amines, we have found that the regression coefficients [ρ_{Im} and $\alpha_{1 m}$, equations (1) and (2)] depend to a considerable degree on substitution at the amidine carbon atom. ${ }^{13}$ The hypothesis has been formed that the $\mathrm{p} K_{\mathrm{a}}$ values of amidines containing two variable substituents at these sites obey equation (4). This

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{0}-\rho_{\mathrm{lm}} \sigma_{\mathrm{lm}}-\rho_{\mathrm{F}} \sigma_{\mathrm{F}}-\mu \sigma_{\mathrm{lm}} \sigma_{\mathrm{F}} \tag{4}
\end{equation*}
$$

equation ensures that if the substituent at one of these sites is not varied a linear correlation will be obtained. The slope of the
correlation line depends on the σ value of the substituent and on the term μ representing the mutual interaction of substituents. For series of amidines with variable substituents at the imino nitrogen atom the value $\rho_{\mathrm{F}} \sigma_{\mathrm{F}}$ is included in the $\mathrm{p} K_{\mathrm{a}}^{0}$ value for the series and the observed ρ_{Im} value is equal to the sum $\rho_{\mathrm{Im}}+\mu \sigma_{\mathrm{F}}$.

However it appeared that in the case of benzamidines changes in the ρ_{lm} or ρ_{F} values caused by substitution of a methyl group for a chlorine atom at the para-position of phenyl ring can be neglected, and that for prediction of their $\mathrm{p} K_{\mathrm{a}}$ values a dual parameter linear equation (3) can be used. ${ }^{17,18}$

Thus the questions arose whether it is possible to find one common equation for amidines containing substituents at amidine carbon atom, how far the equation (4) can be applied for prediction of the $\mathrm{p} K_{\mathrm{a}}$ values of amidines, and what is the value of the term μ ?

For this reason we have synthesized three series of $N^{1} N^{1}$ dimethylamidines containing alkyl substituents of increasing

Compound	R_{x}	Compound	R_{x}
(1), (26), (51)	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	(14), (39), (64)	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OC}$
(2), (27), (52),		(15), (40), (65)	p- $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$
(76), (81)	$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	(16), (41), (66)	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
(3), (28), (53)	$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$	(17), (42), (67),	
(4), (29), (54)	$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	(78)	$m-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$
$\begin{aligned} & (5),(30),(55), \\ & (77) \end{aligned}$	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$	$\begin{gathered} (18),(43),(68), \\ (79) \end{gathered}$	$p-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$
(6), (31), (56)	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$	(19), (44), (69),	
(7), (32), (57)	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	(80), (82)	ally
(8), (33), (58)	$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$	(20), (45), (70)	isobutyl
(9), (34), (59)	$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OC}_{2} \mathrm{H}_{5}$	(21), (46), (71)	n-hexyl
(10), (35), (60)	$\mathrm{C}_{6} \mathrm{H}_{5}$	(22), (47), (72)	n-butyl
(11), (36), (61)	$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	(23), (48), (73)	n-propyl
(12), (37), (62)	p - $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	(24), (49), (74)	cyclohexyl

R_{z}	Series	
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	$N^{1} N^{1}$-dimethylpropionamidines	(PrpDM)
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$N^{1} N^{1}$-dimethylisobutyramidines	(iBtrDM)
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$N^{1} N^{1}$-dimethylpivalamidines	(PivDM)
CH_{3}	$N^{1} N^{1}$-dimethylacetamidines	(ADM)
H	$N^{1} N^{1}$-dimethylformamidines	(FDM)

Table 1. Characterization of $N^{1} N^{1}$-dimethylamidines
(a) N^{2}-Phenyl derivatives

${ }^{a}$ Alkoxy. ${ }^{b}$ Benzyl. ${ }^{c} \pm 0.1 .{ }^{d}$ Multiplet $\delta 6.7-7.3 .{ }^{e}$ Ref. 24, 75-78/1. ${ }^{f} \mathrm{~N}=\mathrm{CH}-\mathrm{N}: \delta 7.78 .{ }^{g}$ Ref. 25, 198—200/12; ref. 26, 111--113/0.0005. ${ }^{j} \mathrm{M} . \mathrm{p}$. $85-86^{\circ} \mathrm{C} .{ }^{k}$ M.p. $72-74^{\circ} \mathrm{C} .{ }^{\prime}$ M.p. $78-79^{\circ} \mathrm{C} .{ }^{m}$ M.p. $65-66^{\circ} \mathrm{C} .{ }^{n}$ M.p. $88-90^{\circ} \mathrm{C}$.

Table 1 (continued)
(b) N^{2}-Alkyl derivatives

				$\mathrm{N}=\mathrm{C}-\mathrm{N}$	$\begin{aligned} & \mathrm{N}=\mathrm{C}-\mathrm{N} \\ & \mid \\ & \mathrm{C} \end{aligned}$	Alkyl group at N^{2}					
			NMe_{2}	$\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}$	$\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}_{3}$	α	β	γ	δ	ε	ζ
(19)	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2}$	74/20	3.24	2.24	1.15	3.91	5.93	5.20			
(20)	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}$	80/16	3.26	2.20	1.11	3.18	1.78	0.84			
(21)	$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2}$	107-108/16	3.28	2.22	1.08	3.25	a	a	a	a	0.88
(22)	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}$	86-90/16	3.23	2.23	1.13	3.13	b	b	0.92		
(23)	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2}$	$72-75 / 15$	3.24	2.21	1.11	3.11	1.58	0.91			
(24)	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2}$	105-108/13	3.25	2.25	1.08	3.25	b	b	b		
(25)	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2}$	55/16	3.34	2.25	1.11	3.66	1.04				
(44)	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$	$80-82 / 17$	2.84	$3.05{ }^{\text {c }}$	1.20	4.01	5.94	5.10			
(45)	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$	$77-78 / 15$	2.81	$3.04{ }^{\text {c }}$	1.19	3.10	1.79	0.92			
(46)	$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{2}$	122-123/16	2.74	$3.00^{\text {c }}$	1.19	3.24	a	a	a	a	0.83
(47)	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$	$86-86 / 16$	2.79	$3.01^{\text {c }}$	1.20	3.29	a	a	0.93		
(48)	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}$	73/17	2.78	$3.01{ }^{\text {c }}$	1.19	3.23	1.48	0.90			
(49)	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2}$	120-122/17	2.75	$3.04{ }^{\text {c }}$	1.20	3.30	b	b	b		
(50)	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}$	80-82/35	2.78	$3.10{ }^{c}$	1.20	3.75	1.05				
(69)	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2}$	81/18	2.74		1.18	3.95	5.88	5.11			
(70)	$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2}$	82/18	2.73		1.16	3.08	1.85	0.86			
(71)	$\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}_{2}$	114-120/16	2.73		1.15	3.25	a	a	a	a	0.86
(72)	$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2}$	88/16	2.74		1.18	3.28	a	a	0.92		
(73)	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$	$76-78 / 18$	2.73		1.15	3.21	1.50	0.89			
(74)	$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2}$	124-128/23	2.71		1.11	3.41	b	b	b		
(75)	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$	64/18	2.75		1.15	3.86	1.12				
(80)	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2}$	68/19	2.94	2.09		3.94	5.90	5.21			
(82)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}$	50/20	2.85	d		3.88	5.90	5.18			

inductive effect such as ethyl, isopropyl, and t-butyl at the amidine carbon atom and measured their $\mathrm{p} K_{\mathrm{a}}$ values in 95.6% ethanol. Compounds of each series contained the same set of 25 substituents R_{x} at the imino nitrogen atom. For comparative purposes we have also synthesized a few formamidines (81) and (82) and acetamidines (76)-(80) which were not studied previously. ${ }^{10.13}$

Experimental

Synthesis of Propionamidines, Acetamidines, and Formami-dines.-The $N^{1} N^{1}$-dimethyl-propionamidines (1)-(25), -acetamidines (76)-(80), and -formamidines (81) and (82) were synthesized by Scoggins' ${ }^{19}$ procedure by heating equimolar amounts of primary amine $\mathrm{R}_{\mathrm{x}} \mathrm{NH}_{2}$ with the dimethyl acetal of the corresponding dimethylamide. ${ }^{20.21}$ The amidines after evaporation of methanol evolved in the reaction were distilled under reduced pressure in a microscale apparatus.
Synthesis of Pivalamidines and Isobutyramidines.-The $N^{1} N^{1}$ -dimethyl-pivalamidines (51)-(75) and -isobutyramidines (26)--(50) were synthesized by reaction of primary amines $\mathrm{R}_{\mathrm{x}} \mathrm{NH}_{2}$ with a chloroform solution of NN -dimethylchloropivaliminium chloride, or NN -dimethylchloroisobutyriminium chloride respectively. Chloroiminium chloride solutions were obtained by reaction of the corresponding dimethylamide in CHCl_{3} with an equimolar amount of oxalyl chloride at low temperature. ${ }^{22}$
The amidines after evaporation of chloroform, extraction by ether from the basified reaction mixture, and evaporation of ether were distilled under reduced pressure in a microscale apparatus.

Structures and Purity of Amidines.-The structures of the amidines obtained were confirmed by ${ }^{1} \mathrm{H}$ n.m.r. spectra (80 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$; room temperature). Chemical shifts are summarized in Table 1.

The amidines were over 95% pure, and free of unchanged amine. Their purity was checked by g.l.c. on a 3 m column packed with 15% silicone gum rubber GE SE-30 on Chromosorb W AW 60- 80 mesh. Analyses were made at $240^{\circ} \mathrm{C}$ using nitrogen at a flow rate of $40 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$, and a flame ionization detector. Retention indices of amidines are given elsewhere. ${ }^{23}$
$\mathrm{p} K_{\mathrm{a}}$ Measurements.-The $\mathrm{p} K_{\mathrm{a}}$ values were determined by potentiometric titration in 95.6% ethanol (azeotrope) at $25 \pm 0.1^{\circ} \mathrm{C}$ and calculated from relation (5) ${ }^{27}$ where $\mathrm{p} K_{\mathrm{a}_{1}}$ and $\mathrm{p} K_{\mathrm{a},}$ are the $\mathrm{p} K_{\mathrm{a}}$ values of the investigated compound (i) and the standard (s), and pH_{x} are the pH values at the $x=1 / 4,3 / 8,1 / 2$, $5 / 8$, and $3 / 4$ neutralization points. As standard, imidazole ($\mathrm{p} K$

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}_{i}}=\mathrm{p} \mathrm{H}_{x_{i}}-\mathrm{pH} \mathrm{X}_{x_{j}}+\mathrm{p} K_{\mathrm{a}_{\mathrm{s}}} \tag{5}
\end{equation*}
$$

5.94 in 95.6% ethanol ${ }^{28}$) was used. Discussion of experimental details securing the reproducibility as well as the reliability of the measured $\mathrm{p} K_{\mathrm{a}}$ values is given in previous papers. ${ }^{10.11 .13}$ The $\mathrm{p} K_{\mathrm{a}}$ values and confidence intervals calculated at a significance level of 0.95 are summarized in Table 2. The error in $\mathrm{p} K_{\mathrm{a}}$ determination, as discussed previously, ${ }^{10}$ does not exceed 0.05 $\mathrm{p} K_{\mathrm{a}}$ units. The $\mathrm{p} K_{\mathrm{a}}$ values may include a systematic error of $c a$. $0.1 \mathrm{p} K_{\mathrm{a}}$ units contributed by the $\mathrm{p} K_{\mathrm{a}}$ value of the standard, but on account of its constancy it has no influence on the regression coefficients.

Results and Discussion

Correlations with σ Constants.-The reliability of any conclusions based on comparison of the ρ values depends on both the number of compounds in the series as well as on the range of substituent effects. But there is another substantial factor to which not enough attention is paid, that is the comparability of the series. As the regression line very seldom goes through all the experimental points, and usually is only the

Table 2. $\mathrm{p} K_{\mathrm{a}}$ Values of N^{2}-substituted $N^{1} N^{1}$-dimethyl-propionamidines (PrpDM), -isobutyramidines (iBtrDM), -pivalamidines (PivDM), -acetamidines (ADM), and -formamidines (FDM) in $95.6 \% \mathrm{EtOH}$ at $(25 \pm 0.1){ }^{\circ} \mathrm{C}^{a}$

Compound	$\begin{aligned} & \operatorname{PrpDM} \\ & \mathrm{p} K_{\mathrm{a}} \end{aligned}$	Compound	$\begin{gathered} \mathrm{iBtrDM} \\ \mathrm{p} K_{\mathrm{a}} \end{gathered}$	Compound	$\begin{gathered} \text { PivDM } \\ \mathrm{p} K_{\mathrm{a}} \end{gathered}$	Compound	$\begin{gathered} \mathrm{ADM} \\ \mathrm{p} K_{\mathrm{a}} \end{gathered}$
(1)	5.65 ± 0.03	(26)	5.52 ± 0.03	(51)	5.18 ± 0.04	(76)	6.38 ± 0.03
(2)	6.06 ± 0.06	(27)	6.14 ± 0.03	(52)	5.86 ± 0.03	(77)	7.53 ± 0.02
(3)	7.13 ± 0.03	(28)	7.03 ± 0.01	(53)	6.81 ± 0.03	(78)	11.60 ± 0.03
(4)	7.15 ± 0.07	(29)	7.10 ± 0.01	(54)	7.01 ± 0.06	(79)	11.64 ± 0.03
(5)	7.36 ± 0.01	(30)	7.54 ± 0.07	(55)	7.17 ± 0.01	(80)	11.75 ± 0.03
(6)	7.43 ± 0.07	(31)	7.41 ± 0.02	(56)	7.20 ± 0.01		
(7)	7.55 ± 0.02	(32)	7.51 ± 0.02	(57)	7.19 ± 0.09		FDM
(8)	8.13 ± 0.03	(33)	8.12 ± 0.01	(58)	7.91 ± 0.02		
(9)	8.16 ± 0.01	(34)	8.15 ± 0.01	(59)	7.93 ± 0.03	(81)	5.58 ± 0.01
(10)	8.30 ± 0.03	(35)	8.22 ± 0.02	(60)	8.03 ± 0.04	(82)	10.18 ± 0.01
(11)	8.38 ± 0.07	(36)	8.41 ± 0.03	(61)	8.24 ± 0.03		
(12)	8.44 ± 0.08	(37)	8.63 ± 0.02	(62)	8.43 ± 0.01		
(13)	8.89 ± 0.03	(38)	8.93 ± 0.01	(63)	8.63 ± 0.05		
(14)	8.94 ± 0.03	(39)	8.89 ± 0.03	(64)	8.62 ± 0.02		
(15)	11.11 ± 0.09	(40)	11.13 ± 0.07	(65)	9.96 ± 0.02		
(16)	11.41 ± 0.04	(41)	11.36 ± 0.04	(66)	10.30 ± 0.05		
(17)	11.48 ± 0.09	(42)	11.31 ± 0.05	(67)	10.28 ± 0.02		
(18)	11.66 ± 0.05	(43)	11.72 ± 0.06	(68)	10.54 ± 0.04		
(19)	11.59 ± 0.04	(44)	11.88 ± 0.05	(69)	10.65 ± 0.04		
(20)	11.96 ± 0.06	(45)	11.93 ± 0.09	(70)	10.76 ± 0.03		
(21)	12.11 ± 0.09	(46)	11.95 ± 0.09	(71)	10.98 ± 0.09		
(22)	12.13 ± 0.03	(47)	12.22 ± 0.09	(72)	10.91 ± 0.03		
(23)	12.20 ± 0.09	(48)	12.33 ± 0.07	(73)	10.94 ± 0.03		
(24)	12.28 ± 0.05	(49)	12.16 ± 0.09	(74)	10.91 ± 0.03		
(25)	12.30 ± 0.09	(50)	12.26 ± 0.06	(75)	10.88 ± 0.05		

${ }^{a}$ At ionic strength $\mu 0.01$, using imidazole $\mathrm{p} K_{\mathrm{a}} 5.94$ as standard.

Table 3. Parameters of regressions* with substituent constants [equation (1)]

Type							
Series	of σ	$\mathrm{p} K_{\mathrm{a}}^{0}$	ρ_{lm}	r	Ψ	s	n
FDM	σ	7.39	2.53 ± 0.33	0.9790	0.2202	0.1522	14
	σ^{0}	7.45	2.63 ± 0.21	0.9935	0.1252	0.0956	$12 \dagger$
ADM	σ	8.27	2.91 ± 0.34	0.9835	0.1957	0.1546	14
	σ^{0}	8.33	2.97 ± 0.25	0.9931	0.1288	0.1112	$12 \dagger$
PrpDM	σ	8.19	3.01 ± 0.34	0.9843	0.1908	0.1561	14
	σ^{0}	8.24	3.07 ± 0.22	0.9949	0.1105	0.0983	$12 \dagger$
iBtrDM	σ	8.21	3.11 ± 0.29	0.9890	0.1595	0.1338	14
	σ^{0}	8.26	3.14 ± 0.23	0.9946	0.1140	0.1040	$12 \dagger$
PivDM	σ	7.97	3.15 ± 0.37	0.9827	0.2003	0.1714	14
	σ^{0}	8.04	3.23 ± 0.27	0.9932	0.1276	0.1198	$12 \dagger$

* At a confidence level of 0.95 . + Without p - and m-OEt derivatives.
'line of the best fit' it is obvious that addition or substraction of some experimental points may alter the slope of a regression line.

Therefore we have studied series of amidines containing the same set of substituents at the imino nitrogen atom. To make possible comparison of correlations obtained for propionamidines, isobutyramidines, and pivalamidines with the previously studied formamidines ${ }^{10}$ and acetamidines ${ }^{13}$ we have synthesized and measured the $\mathrm{p} K_{\mathrm{a}}$ values of a few acetamidines (76)(80) and formamidines (81) and (82).

We have correlated the $\mathrm{p} K_{\mathrm{a}}$ values of the amidines studied with both σ and σ^{0} values. ${ }^{29,30}$ Regression parameters are summarized in Table 2.

Consideration of the interaction of substituents with the protonation centre (imino nitrogen atom) led to the conclusion ${ }^{13}$ that for amidines containing substituents at the phenyl ring on the imino nitrogen atom σ^{0} should be most suitable. The regression parameters obtained (Table 3) indicate that for all studied series (as for other series of amidines ${ }^{10,13.18}$)

Table 4. Parameters of regressions ${ }^{a}$ with $\mathrm{p} K_{\mathrm{a}}$ values of primary amines [equation (2)]

Series	$\mathrm{p} K_{\mathrm{a}}^{0}$	α_{lm}	r	Ψ	s	n
FDM	7.29	0.62 ± 0.02	0.9969	0.0816	0.0104	24^{b}
	7.34	0.69 ± 0.10	0.9788	0.2226	0.0434	13^{c}
	6.24	0.82 ± 0.05	0.9974	0.0799	0.0198	11^{d}
ADM	8.16	0.75 ± 0.02	0.9983	0.0609	0.0094	24^{b}
	8.21	0.82 ± 0.08	0.9896	0.1566	0.0361	13^{c}
	7.44	0.89 ± 0.12	0.9833	0.2014	0.0549	11^{d}
PrpDM	8.07	0.73 ± 0.02	0.9981	0.0651	0.0097	24^{b}
	8.12	0.82 ± 0.09	0.9862	0.1801	0.0417	13^{c}
	7.78	0.78 ± 0.07	0.9934	0.1268	0.0301	11^{d}
iBtrDM	8.06	0.74 ± 0.03	0.9971	0.0798	0.0120	24^{b}
	8.14	0.87 ± 0.07	0.9929	0.1291	0.0313	13^{c}
	7.96	0.75 ± 0.22	0.9312	0.4030	0.0976	11^{d}
PivDM	7.73	0.58 ± 0.04	0.9870	0.1679	0.0200	24^{b}
	7.90	0.88 ± 0.10	0.9851	0.1869	0.0462	13^{c}
	7.40	0.63 ± 0.15	0.9545	0.3295	0.0651	11^{d}

${ }^{a}$ At a confidence level of $0.95 .{ }^{b}$ Without $m-\mathrm{NO}_{2}$ derivatives. ${ }^{c}$ Only $N^{2}-$ phenyl derivatives. ${ }^{d}$ Only N^{2}-alkyl and N^{2}-benzyl derivatives.
correlations with σ^{0} values are of higher quality; however correlations with ordinary σ values are still satisfactory, as indicated by the correlation coefficients r and Exner's ${ }^{31} \Psi$ function.

The correlations provide evidence for an earlier conclusion that substituents at the functional (amidino) carbon atom exert an influence on the ρ_{lm} value. ${ }^{13}$ Comparing the ADM, PrpDM, iBtrDM, and PivDM series one readily sees that the ρ value increases with the number of methyl groups at the α-carbon atom at the functional carbon atom. Indeed there is a good linear correlation between the ρ values and the number of methyl groups. This indicates that the ρ value may depend on the inductive effect of an alkyl substituent at the amidino carbon atom.

We have found that the $\rho_{1 m}$ values of these series and also the

Figure. Correlation of the ρ_{lm} values with the σ^{*} values of substituents at the amidino carbon atom. 1, PivDM; 2, iBtrDM; 3, PrpDM; 4, ADM; 5, FDM; 6, BDM series

FDM series can be correlated with the σ^{*} values ${ }^{32}$ of alkyl substituents ${ }^{18}$ at the amidino carbon atom [equation (6)]. But

$$
\begin{equation*}
\rho_{\mathrm{lm}}=\rho_{\mathrm{lm}}^{0}+\mu \sigma_{\mathrm{F}}^{*} \tag{6}
\end{equation*}
$$

amidines containing a phenyl ring at this site (benzamidines BDM ${ }^{18}$) do not fit this correlation as shown in the Figure. In equation (6) ρ_{lm} is the observed ρ value for series of amidines containing various substituents at the phenyl ring on the imino nitrogen atom, and a fixed substituent at the amidino carbon atom. $\rho_{1 m}^{0}$ Is the $\rho_{1 m}$ value for the ADM series (σ^{*} of CH_{3} group $=0$).

Using the least-squares method at a significance level of 0.95 the parameters for equation (6) are displayed in equation (7).

$$
\begin{align*}
\rho_{\mathrm{Im}} & =(2.99 \pm 0.02)-(0.76 \pm 0.08) \sigma_{\mathrm{F}}^{*} \\
r & =0.998, \Psi=0.074, s_{\mathrm{a}}=0.0250, n=5 \tag{7}
\end{align*}
$$

The regression provides strong support for the conclusions that the sensitivity of the amidino group to substitution at the imino nitrogen atom depends on substitution at the amidino carbon atom and that for prediction of the $\mathrm{p} K_{\mathrm{a}}$ values of amidine derivatives of aliphatic carboxylic acids an equation of type (4) should be used.
The term μ has a negative value. It indicates that the increase of the electron density at the $\mathrm{C}=\mathrm{N}$ double bond, caused by the inductive effect of a substituent at the amidino carbon atom, increases the sensitivity of the amidino group to the effect of substituents at the imino nitrogen atom.
We have calculated parameters for equation (4) using the $\mathrm{p} K_{\mathrm{a}}$ values of all 5 series (FDM, ADM, PrpDM, iBtrDM, and PivDM; total 60 compounds).

$$
\begin{aligned}
& \rho K_{\mathrm{a}}=8.04-(2.99 \pm 0.20) \sigma_{{ }_{\mathrm{lm}}}^{{ }^{\circ}-(0.93 \pm 0.27) \sigma_{\mathrm{F}}^{*}-(0.76 \pm} \\
& 0.72) \sigma_{\mathrm{Im}}^{0} \sigma_{\mathrm{F}}^{*} \\
& \quad r=0.973, \quad \Psi=0.239, \quad s_{\mathrm{Im}}=0.0980, \quad s_{\mathrm{F}}=0.1357, \quad s_{\mathrm{u}}= \\
& 0.3576, n=60
\end{aligned}
$$

The correlation does have a predictive value. The difference between the $\mathrm{p} K_{\mathrm{a}}$ values obtained experimentally and those calculated from equation (6) in 80% of cases does not exceed $0.3 \mathrm{p} K_{\mathrm{a}}$ units, and in 92% of cases does not exceed $0.35 \mathrm{p} K_{\mathrm{a}}$ units.

The best results are obtained for isobutyramidines, where the mean deviation is $c a .0 .03 \mathrm{p} K_{\mathrm{a}}$ units. For other amidines, except those with alkoxy and p-nitro derivatives, it does not exceed 0.2 $\mathrm{p} K_{\mathrm{a}}$. The largest deviations are observed in the case of the m - and p-alkoxy derivatives: p-OMe-FDM -0.44 ; m-OMe-ADM 0.48 ; and m-OMe-PrpDM $0.31 \mathrm{p} K_{\mathrm{a}}$.

It has to be mentioned that deviations of the $\mathrm{p} K_{\mathrm{a}}$ values from the regression for alkoxyphenyl derivatives of amidines were
already observed in other cases, ${ }^{33}$ and therefore they call for some attention.

A considerable deviation from the correlation between the ρ_{Im} values and the σ^{*} values of substituents at the amidino carbon atom observed for benzamidines (cf. Figure, BDM) indicates that a general equation for prediction of the $\mathrm{p} K_{\mathrm{a}}$ values of both types of amidines, containing alkyl as well as aryi substituents at the amidine carbon atom, should contain additional terms. The most probable reason is that the σ^{*} values represent only inductive effects, while in the case of benzamidines the resonance effects may be also involved. This question can be answered only as a result of investigation of properly chosen series of benzamidines.

Correlation with the $\mathrm{p} K_{\mathrm{a}}$ Values of Amines.-We have correlated the $\mathrm{p} K_{\mathrm{a}}$ values of the amidines studied with the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding primary amines measured under the same conditions (the $\mathrm{p} K_{\mathrm{a}}$ value of allylamine 8.95 ± 0.04, the $\mathrm{p} K_{\mathrm{a}}$ values of other amines were already reported. ${ }^{10}$) Parameters of the regressions [equation (2)] are summarized in Table 4.

On account of the wider range of the $\mathrm{p} K_{\mathrm{a}}$ values of amidines and larger numbers of experimental points, correlations with the $\mathrm{p} K_{\mathrm{a}}$ values of corresponding primary amines are of higher quality than with the σ^{0} values, as indicated by the correlation coefficients r and Exner's Ψ function. The parameters of these equations can be used for fairly accurate prediction of the $\mathrm{p} K_{\mathrm{a}}$ values of amidines of certain series. However the changes of the $\alpha_{\text {Im }}$ values, following the changes of the σ^{*} values of the substituent at the functional carbon atom are not so evident as in the case of the ρ_{Im} values obtained for N^{2}-phenylamidines, and thus give no basis for deriving a general equation for prediction of the $\mathrm{p} K_{\mathrm{a}}$ values of amidines containing any kind of substituent at the functional carbon atom. This is most probably due to the different influence of substitution at this site on N-alkyl- and N-aryl-amidines. As can be seen from Table 4 the $\alpha_{1 m}$ values for N^{2}-alkylamidines seem to decrease with an increase of the σ^{*} value of the substituent at the amidino carbon atom, whereas for N^{2}-phenylamidines it is increasing, as expected on the basis of correlations with σ values.

Acknowledgements

This work was supported by the Polish Academy of Sciences, Committee on Chemistry.

References

1 J. Osek, J. Oszczapowicz, and W. Drzewiński, J. Chromatogr., 1986, 351, 177.
2 B. V. Passet, C. N. Kul'bitskii, N. A. Kalashnikova, and T. J. Voropaeva, Zh. Org. Khim., 1972, 8, 1246.
3 J. Ševčik, Chem. Zvesti, 1972, 26, 49.
4 J. Vaes, F. Faubert, and Th. Zeegers-Huyskens, Can. J. Chem., 1975, 53, 604.
5 J. Ševčik, Acta Univ. Palacki, Olomouc. Fac. Rerum Nat., 1976, 49, 53.
6 M. J. Cook, A. R. Katritzky, and S. Nadji, J. Chem. Soc., Perkin Trans. 2, 1976, 211.
7 J. Oszczapowicz, R. Orliński, and H. Walczyńska, Pol. J. Chem., 1979, 53, 2531.
8 J. Oszczapowicz, J. Osek, and R. Orliński, Pol. J. Chem., 1980, 54, 1191.

9 J. Oszczapowicz, E. Raczyńska, and R. Orliński, Pol. J. Chem., 1981, 55, 2031.
10 J. Oszczapowicz and E. Raczyńska, Pol. J. Chem., 1983, 57, 419.
11 J. Oszczapowicz, E. Raczyńska, and T. Pawlik, Pol. J. Chem., 1984, 58, 117.
12 J. Oszczapowicz and R. Orliński, Pol. J. Chem., 1980, 54, 1901.
13 J. Oszczapowicz and E. Raczyńska, J. Chem. Soc., Perkin Trans. 2, 1984, 1643.
14 H. H. Jaffé, Chem. Rev., 1953, 53, 191.

15 M. Charton, J. Org. Chem., 1965, 30, 969.
16 L. L. Popova, I. D. Sadekov, and W. J. Minkin, React. Sposobnost Org. Soed., 1968, 5, 651, 682; 1969, 6, 47.
17 J. Oszczapowicz, E. Raczyńska, and I. Barecka, Pol. J. Chem., 1985, 59, 387.
18 J. Oszczapowicz, W. Krawczyk, J. Osek, and E. Raczyńska, Pol. J. Chem., 1986, 60, 157.

19 M. W. Scoggins, J. Chromatogr. Sci., 1975, 13, 146.
20 H. Bredereck, G. Simchen, S. Rebstad, and W. Kantlehner, Chem. Ber., 1968, 101, 41.
21 C. Feugeas, D. Olschwang, and M. Chatropoulos, Compt. Rend., 1967, 265, 113.
22 I. Buśko-Oszczapowicz, A. Sikora, and J. Cieślak, Acta Pol. Pharm., 1980, 37, 643; 1982, 39, 113.
23 J. Oszczapowicz, K. Ciszkowski, and J. Osek, J. Chromatogr., 1986, 362, 383.
24 N. Murai, M. Komatsu, T. Yagii, H. Nishihara, Y. Ohshiro, and T. Agawa, J. Org. Chem., 1977, 42, 847.

25 H. Bredereck, F. Effenberg, H. Botsch, and H. Rehn, Chem. Ber., 1965, 98, 1081.
26 H. Bredereck, F. Effenberg, and A. Hoffmann, Chem. Ber., 1964,97, 61.
27 G. Charlot and B. Trémillon, 'Les reaction chimiques dans les solvants et les sels fondus,' Gauthier-Villars, Paris, 1963, p. 40.
28 J. Oszczapowicz and M. Czuryłowska, Talanta, 1984, 31, 559.
29 O. Exner in 'Correlation Analysis in Chemistry, Recent Advances,' eds. N. B. Chapman and J. Shorter, Plenum Press, New York, 1978, p. 439.

30 D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23, 420.
31 O. Exner, Collect. Czech. Chem. Commun., 1966, 31, 3222.
32 'Steric Effects in Organic Chemistry,' ed. M. S. Newman, Wiley, New York, 1956, ch. 13, p. 591.
33 E. Raczyńska, J. Oszczapowicz, and M. Walczak, J. Chem. Soc., Perkin Trans. 2, 1985, 1087.

